Cancerous Nuclei Detection and Scoring in Breast Cancer Histopathological Images
نویسندگان
چکیده
Early detection and prognosis of breast cancer are feasible by utilizing histopathological grading of biopsy specimens. This research is focused on detection and grading of nuclear pleomorphism in histopathological images of breast cancer. The proposed method consists of three internal steps. First, unmixing colors of H&E is used in the preprocessing step. Second, nuclei boundaries are extracted incorporating the center of cancerous nuclei which are detected by applying morphological operations and Difference of Gaussian filter on the preprocessed image. Finally, segmented nuclei are scored to accomplish one parameter of the Nottingham grading system for breast cancer. In this approach, the nuclei area, chromatin density, contour regularity, and nucleoli presence, are features for nuclear pleomorphism scoring. Experimental results showed that the proposed algorithm, with an accuracy of 86.6%, made significant advancement in detecting cancerous nuclei compared to existing methods in the related literature.
منابع مشابه
Automated Malignancy Detection in Breast Histopathological Images
Detection of malignancy from histopathological images of breast cancer is a labor-intensive and error-prone process. To streamline this process, we present an efficient Computer Aided Diagnostic system that can differentiate between cancerous and non-cancerous H&E (hemotoxylin&eosin) biopsy samples. Our system uses novel textural, topological and morphometric features taking advantage of the sp...
متن کاملExtraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images
Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...
متن کاملExtraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images
Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملNuclear pleomorphism scoring by selective cell nuclei detection
Scoring the nuclear pleomorphism in histopathological images is a standard clinical practice for the diagnosis and prognosis of breast cancer. It relies highly on the experience of the pathologists. In a large hospital, one pathologist may have to evaluate more than a hundred cases per day, which is a very tedious and time-consuming task. Thus, it is necessary to develop an automatic system to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.01237 شماره
صفحات -
تاریخ انتشار 2016